Reorganization of the centrosome and associated microtubules during the morphogenesis of a mouse cochlear epithelial cell.
نویسندگان
چکیده
Reorganization of centrosomal microtubule-organizing centres and the minus ends of microtubules occurs as the centrosomal ends of large microtubule bundles are repositioned and anchored to cell junctions in certain epithelial cells called inner pillar cells in the mouse organ of Corti. The microtubule bundle that assembles in each cell consists of two distinct microtubule arrays that run closely alongside each other. Both arrays are attached to the cell surface at their upper and lower ends. One of the arrays spans the entire length of a cell but the other is confined to its lower portion. Initially, about 3,000 microtubules elongate downwards from an apically situated centrosome in each cell. Subsequently, the minus ends of these microtubules, and the centrosome and its two centrioles, migrate for about 12 microns to the tip of a laterally directed projection. Then, a meshwork of dense material accumulates to link microtubule minus ends and the centrosome to cell junctions at the tip of the projection. Pericentriolar satellite bodies, which form after the initial burst of microtubule nucleation, may represent a condensed and inactive concentration of microtubule-nucleating elements. Surprisingly, as a cell matures, about 2,000 microtubules are eliminated from the centrosomal end of the microtubule bundle. However, about 2,000 microtubules are added to the basal portion of each bundle at levels that are remote with respect to the location of the centrosome. Possibly, these microtubules have escaped from the centrosome. If this is the case, then both the plus and minus ends of most of the errant microtubules are captured by sites at the cell surface where the ends are finally anchored. Alternatively, each cell possesses at least one other major microtubule-nucleating site (which does not possess centrioles) in addition to its centrosome.
منابع مشابه
A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells.
Microtubules (MTs) are essential for many cell features, such as polarity, motility, shape, and vesicle trafficking. Therefore, in a multicellular organism, their organization differs between cell types and during development; however, the control of this process remains elusive. Here, we show that during Drosophila tracheal morphogenesis, MT reorganization is coupled to relocalization of the m...
متن کاملNucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells.
This report deals with the as yet undetermined issue of whether cell-surface associated microtubules in certain cochlear epithelial cells are centrosomally nucleated and subsequently migrate to microtubule-capturing sites located at the surface regions in question. Alternatively, the cells may possess additional nucleating sites which are noncentrosomal and surface-associated. These alternative...
متن کاملEvalauation of Laminin Expression during Mouse Lens Development
Introduction: Among the components of the extracellular matrix (ECM) and basement membrane (BM), laminitis heterotrimeric glycoprotein (laminin) and collagen type IV are the most important. In a previous study we have examined the role of collagen type IV in the developing lens capsule. The present study aims to determine the appearance and distribution of laminin in the BM and ECM of lenses ...
متن کاملEB1-Recruited Microtubule +TIP Complexes Coordinate Protrusion Dynamics during 3D Epithelial Remodeling
BACKGROUND Epithelial remodeling, in which apical-basal polarized cells switch to a migratory phenotype, plays a central role in development and disease of multicellular organisms. Although dynamic microtubules (MTs) are required for directed migration on flat surfaces, how MT dynamics are controlled or contribute to epithelial remodeling in a more physiological three-dimensional (3D) environme...
متن کاملMicrotubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein.
The novel concept of a centrosomal anchoring complex, which is distinct from the gamma-tubulin nucleating complex, has previously been proposed following studies on cochlear epithelial cells. In this investigation we present evidence from two different cell systems which suggests that the centrosomal protein ninein is a strong candidate for the proposed anchoring complex. Ninein has recently be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 107 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1994